STARBASE Minnesota – Duluth Alignment to MN K-12 Standards in Science and Mathematics

The STARBASE experience supports the following Minnesota science and math standards

Science

Grade	Strand	Substrand	Standard	Number	Benchmark
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review. 	5.1.1.1.1	Explain why evidence, clear communication, accurate record keeping, replication by others, and openness to scrutiny are essential parts of doing science.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review. 	5.1.1.1.2	Recognize that when scientific investigations are replicated they generally produce the same results, and when results differ significantly, it is important to investigate what may have caused such differences. For example: Measurement errors, equipment failures, or uncontrolled variables.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review. 	5.1.1.1.3	Understand that different explanations for the same observations usually lead to making more observations and trying to resolve the differences.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Science is a way of knowing about the natural world, is done by individuals and groups, and is characterized by empirical criteria, logical argument and skeptical review. 	5.1.1.1.4	Understand that different models can be used to represent natural phenomena and these models have limitations about what they can explain. For example: Different kinds of maps of a region provide different information about the land surface.
5	1. The Nature of Science and Engineering	1. The Practice of Science	 Scientific inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations. 	5.1.1.2.1	Generate a scientific question and plan an appropriate scientific investigation, such as systematic observations, field studies, open-ended exploration or controlled experiments to answer the question.
5	1. The Nature of Science and Engineering	1. The Practice of Science	2. Scientific inquiry requires identification of assumptions, use of critical and logical thinking, and consideration of alternative explanations.	5.1.1.2.2	Identify and collect relevant evidence, make systematic observations and accurate measurements, and identify variables in a scientific investigation.

5	 The Nature of Science and Engineering Physical Science 	3. Interactions Among Science, Engineering, Technology and Society 2. Motion	 4. Tools and mathematics help scientists and engineers see more, measure more accurately, and do things that they could not otherwise accomplish. 1. An object's motion is affected by forces and can be described by the object's speed and the direction it is moving 	5.1.3.4.1	Use appropriate tools and techniques in gathering, analyzing and interpreting data. For example: Spring scale, metric measurements, tables, mean/median/range, spreadsheets, and appropriate graphs. Identify the force that starts something moving or changes its speed or direction of motion. For example: Eriction slows down a moving skateboard
5	2. Physical Science	2. Motion	 An object's motion is affected by forces and can be described by the object's speed and the direction it is moving. 	5.2.2.1.3	Demonstrate that a greater force on an object can produce a greater change in motion.
6	1. The Nature of Science and Engineering	2. The Practice of Engineering	 Engineers create, develop and manufacture machines, structures, processes and systems that impact society and may make humans more productive. 	6.1.2.1.2	Recognize that there is no perfect design and that new technologies have consequences that may increase some risks and decrease others. For example: Seat belts and airbags.
6	1. The Nature of Science and Engineering	2. The Practice of Engineering	 Engineers create, develop and manufacture machines, structures, processes and systems that impact society and may make humans more productive. 	6.1.2.1.4	Explain the importance of learning from past failures, in order to inform future designs of similar products or systems. For example: Space shuttle or bridge design.
6	1. The Nature of Science and Engineering	2. The Practice of Engineering	2. Engineering design is the process of devising products, processes and systems that address a need, capitalize on an opportunity, or solve a specific problem.	6.1.2.2.1	Apply and document an engineering design process that includes identifying criteria and constraints, making representations, testing and evaluation, and refining the design as needed to construct a product or system to solve a problem.
6	1. The Nature of Science and Engineering	3. Interactions Among Science, Tech, Engineering, Math & Society	1. Designed and natural systems exist in the world. These systems consist of components that act within the system and interact with other systems.	6.1.3.1.1	Describe a system in terms of its subsystems and parts, as well as its inputs, processes and outputs.
6	1. The Nature of Science and Engineering	3. Interactions Among Science, Tech, Engineering, Math & Society	 Current and emerging technologies have enabled humans to develop and use models to understand and communicate how natural and designed systems work and interact. 	6.1.3.4.1	Determine and use appropriate safe procedures, tools, measurements, graphs, and mathematical analyses to describe and investigate natural and designed systems in a physical science context.
6	2. Physical Science	3. Energy	 Energy can be transformed within a system or transferred to other systems or the environment. 	6.2.3.2.2	Trace the changes of energy forms, including thermal, electrical, chemical, mechanical or others as energy is used in devices. For example: A bicycle, light bulb or automobile.

Math

Grade	Strand	Standard	Number	Benchmark
5	1. Number & Operation	Read, write, represent and compare fractions and decimals; recognize and write equivalent fractions; convert between fractions and decimals; use fractions and decimals in real-world and mathematical situations.	5.1.2.1	Read and write decimals using place value to describe decimals in terms of groups from millionths to millions. For example: Possible names for the number 0.0037 are: 37 ten thousandths 3 thousandths + 7 ten thousandths; a possible name for the number 1.5 is 15 tenths.
5	1. Number & Operation	Read, write, represent and compare fractions and decimals; recognize and write equivalent fractions; convert between fractions and decimals; use fractions and decimals in real-world and mathematical situations.	5.1.2.3	Order fractions and decimals, including mixed numbers and improper fractions, and locate on a number line. For example: Which is larger 1.25 or 6/5? Another example: In order to work properly, a part must fit through a 0.24-inch-wide space. If a part is 1/4 inch wide, will it fit?
5	1. Number & Operation	Add and subtract fractions, mixed numbers and decimals to solve real-world and mathematical problems.	5.1.3.1	Add and subtract decimals and fractions, using efficient and generalizable procedures, including standard algorithms.
5	2. Algebra	Recognize and represent patterns of change; use patterns, tables, graphs and rules to solve real-world and mathematical problems.	5.2.1.2	Use a rule or table to represent ordered pairs of positive integers and graph these ordered pairs on a coordinate system.
5	4. Data Analysis	Display and interpret data; determine mean, median and range.	5.4.1.1	Know and use the definitions of the mean, median and range of a set of data. Know how to use a spreadsheet to find the mean, median and range of a data set. Understand that the mean is a "leveling out" of data. For example: The set of numbers 1, 1, 4, 6 has mean 3. It can be leveled by taking one unit from the 4 and three units from the 6 and adding them to the 1s, making four 3s.
6	3. Geometry & Measurement	Calculate perimeter, area, surface area and volume of two and three dimensional figures to solve real-world and mathematical problems.	6.3.1.3	Estimate the perimeter and area of irregular figures on a grid when they cannot be decomposed into common figures and use correct units, such as cm and cm ² .